3.540 \(\int \frac{A+B \cos (c+d x)}{(a+a \cos (c+d x))^{5/2} \sqrt{\sec (c+d x)}} \, dx\)

Optimal. Leaf size=174 \[ \frac{(5 A+3 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{(A+7 B) \sin (c+d x)}{16 a d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{3/2}}+\frac{(A-B) \sin (c+d x)}{4 d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{5/2}} \]

[Out]

((5*A + 3*B)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos[c +
 d*x]]*Sqrt[Sec[c + d*x]])/(16*Sqrt[2]*a^(5/2)*d) + ((A - B)*Sin[c + d*x])/(4*d*(a + a*Cos[c + d*x])^(5/2)*Sqr
t[Sec[c + d*x]]) + ((A + 7*B)*Sin[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.510908, antiderivative size = 174, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.171, Rules used = {2961, 2977, 2978, 12, 2782, 205} \[ \frac{(5 A+3 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{(A+7 B) \sin (c+d x)}{16 a d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{3/2}}+\frac{(A-B) \sin (c+d x)}{4 d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x])/((a + a*Cos[c + d*x])^(5/2)*Sqrt[Sec[c + d*x]]),x]

[Out]

((5*A + 3*B)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos[c +
 d*x]]*Sqrt[Sec[c + d*x]])/(16*Sqrt[2]*a^(5/2)*d) + ((A - B)*Sin[c + d*x])/(4*d*(a + a*Cos[c + d*x])^(5/2)*Sqr
t[Sec[c + d*x]]) + ((A + 7*B)*Sin[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]])

Rule 2961

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[((a + b*Sin[e + f*x])^m*(
c + d*Sin[e + f*x])^n)/(g*Sin[e + f*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 2977

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{A+B \cos (c+d x)}{(a+a \cos (c+d x))^{5/2} \sqrt{\sec (c+d x)}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\cos (c+d x)} (A+B \cos (c+d x))}{(a+a \cos (c+d x))^{5/2}} \, dx\\ &=\frac{(A-B) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2} \sqrt{\sec (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\frac{1}{2} a (A-B)+a (A+3 B) \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=\frac{(A-B) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2} \sqrt{\sec (c+d x)}}+\frac{(A+7 B) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{a^2 (5 A+3 B)}{4 \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{8 a^4}\\ &=\frac{(A-B) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2} \sqrt{\sec (c+d x)}}+\frac{(A+7 B) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}+\frac{\left ((5 A+3 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{32 a^2}\\ &=\frac{(A-B) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2} \sqrt{\sec (c+d x)}}+\frac{(A+7 B) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}-\frac{\left ((5 A+3 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{2 a^2+a x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{16 a d}\\ &=\frac{(5 A+3 B) \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{16 \sqrt{2} a^{5/2} d}+\frac{(A-B) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2} \sqrt{\sec (c+d x)}}+\frac{(A+7 B) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 1.76977, size = 213, normalized size = 1.22 \[ \frac{\cos ^5\left (\frac{1}{2} (c+d x)\right ) \left (\frac{1}{4} \left (\sin \left (\frac{3}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right ) \sqrt{\sec (c+d x)} \sec ^4\left (\frac{1}{2} (c+d x)\right ) ((A+7 B) \cos (c+d x)+5 A+3 B)+i (5 A+3 B) e^{-\frac{1}{2} i (c+d x)} \sqrt{\frac{e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt{1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac{1-e^{i (c+d x)}}{\sqrt{2} \sqrt{1+e^{2 i (c+d x)}}}\right )\right )}{4 d (a (\cos (c+d x)+1))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x])/((a + a*Cos[c + d*x])^(5/2)*Sqrt[Sec[c + d*x]]),x]

[Out]

(Cos[(c + d*x)/2]^5*((I*(5*A + 3*B)*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x
))]*ArcTanh[(1 - E^(I*(c + d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])])/E^((I/2)*(c + d*x)) + ((5*A + 3*B
+ (A + 7*B)*Cos[c + d*x])*Sec[(c + d*x)/2]^4*Sqrt[Sec[c + d*x]]*(-Sin[(c + d*x)/2] + Sin[(3*(c + d*x))/2]))/4)
)/(4*d*(a*(1 + Cos[c + d*x]))^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.582, size = 375, normalized size = 2.2 \begin{align*}{\frac{\sqrt{2}\cos \left ( dx+c \right ) \left ( -1+\cos \left ( dx+c \right ) \right ) ^{3}}{32\,d{a}^{3} \left ( \sin \left ( dx+c \right ) \right ) ^{7}}\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( A\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}} \left ( \cos \left ( dx+c \right ) \right ) ^{2}+7\,B\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}} \left ( \cos \left ( dx+c \right ) \right ) ^{2}+5\,A\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sin \left ( dx+c \right ) \cos \left ( dx+c \right ) +4\,A\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\cos \left ( dx+c \right ) +3\,B\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sin \left ( dx+c \right ) \cos \left ( dx+c \right ) -4\,B\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\cos \left ( dx+c \right ) +5\,A\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sin \left ( dx+c \right ) -5\,A\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}+3\,B\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sin \left ( dx+c \right ) -3\,B\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}} \right ){\frac{1}{\sqrt{ \left ( \cos \left ( dx+c \right ) \right ) ^{-1}}}} \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))/(a+cos(d*x+c)*a)^(5/2)/sec(d*x+c)^(1/2),x)

[Out]

1/32/d*2^(1/2)/a^3*(a*(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*(-1+cos(d*x+c))^3*(A*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c))
)^(1/2)*cos(d*x+c)^2+7*B*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2+5*A*arcsin((-1+cos(d*x+c))/sin
(d*x+c))*sin(d*x+c)*cos(d*x+c)+4*A*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)+3*B*arcsin((-1+cos(d*x
+c))/sin(d*x+c))*sin(d*x+c)*cos(d*x+c)-4*B*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)+5*A*arcsin((-1
+cos(d*x+c))/sin(d*x+c))*sin(d*x+c)-5*A*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+3*B*arcsin((-1+cos(d*x+c))/s
in(d*x+c))*sin(d*x+c)-3*B*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))/(1/cos(d*x+c))^(1/2)/(cos(d*x+c)/(1+cos(d
*x+c)))^(3/2)/sin(d*x+c)^7

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)^(5/2)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Fricas [A]  time = 1.71398, size = 544, normalized size = 3.13 \begin{align*} -\frac{\sqrt{2}{\left ({\left (5 \, A + 3 \, B\right )} \cos \left (d x + c\right )^{3} + 3 \,{\left (5 \, A + 3 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \,{\left (5 \, A + 3 \, B\right )} \cos \left (d x + c\right ) + 5 \, A + 3 \, B\right )} \sqrt{a} \arctan \left (\frac{\sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right ) - \frac{2 \,{\left ({\left (A + 7 \, B\right )} \cos \left (d x + c\right )^{2} +{\left (5 \, A + 3 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt{\cos \left (d x + c\right )}}}{32 \,{\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-1/32*(sqrt(2)*((5*A + 3*B)*cos(d*x + c)^3 + 3*(5*A + 3*B)*cos(d*x + c)^2 + 3*(5*A + 3*B)*cos(d*x + c) + 5*A +
 3*B)*sqrt(a)*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - 2*((A + 7*B
)*cos(d*x + c)^2 + (5*A + 3*B)*cos(d*x + c))*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d*
cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))**(5/2)/sec(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)^(5/2)*sqrt(sec(d*x + c))), x)